

EXPLORATION MIDLAND ET JOGMEC DÉCOUVRENT DEUX NOUVEAUX SYSTÈMES MINÉRALISÉS EN ÉLÉMENTS DES TERRES RARES SUR SON PROJET YTTERBY AU SUD DE STRANGE LAKE, QUÉBEC.

Montréal, le 23 septembre 2010. Exploration Midland inc. (« Midland ») (Bourse de croissance TSX : MD) a le plaisir d'annoncer avec son partenaire Japan Oil, Gas and Metals National Corporation (« JOGMEC ») la découverte de deux nouveaux systèmes enrichies en élément des terres rares («REE ») sur ses propriétés Ytterby 2 et Ytterby 3 situées respectivement à 65 kilomètres et 100 kilomètres au sud des gîtes de Strange Lake et de la Zone-B. Ces deux nouvelles découvertes soulignent le grand potentiel minier en REE de Strange Lake du Québec et du Labrador.

En juillet Midland a complété un levé magnétique et radiométrique aéroporté de 3 143 kilomètres linéaires qui a identifié plusieurs nouvelles cibles d'exploration pour les REE. Durant juillet et août, une équipe d'exploration a prospecté et échantillonné les portions exposées de ces anomalies magnétiques et radiométriques. De nouveaux résultats d'échantillons sélectionnés venant de 81 affleurements rocheux et de blocs localement dérivés et minéralisés ont donné de très fortes valeurs allant jusqu'à 18,0 % d'oxyde d'éléments des terres rares («TREO») incluant l'yttrium. La proportion d'oxydes d'éléments des terres rares lourdes («HREO») varie de 1,41 % à 18,0 % HREO pour les échantillons contenant plus de 0,5 % TREO. L'analyse des REE individuelles a retourné des résultats significatifs jusqu'à 8,22 % d'oxyde de cérium (Ce₂O₃), 3,38 % oxyde de lanthanum (La₂O₃), 3,39 % oxyde de néodynium (Nd₂O₃), 0,66 % d'oxyde d'yttrium (Y₂O₃), 0,96 % d'oxyde de praséodynium (Pr₂O₃), 0.19% d'oxyde de dysprosium (Dy₂O₃) et 0,35 % d'oxyde de gadolinium (Gd₂O₃). Sur 585 échantillons prélevés, seuls 292 résultats sont disponibles pour le moment.

Sur Ytterby 3, les meilleures concentrations de minéralisation sont associées à des oxydes de fer nichant dans des dykes de pegmatites-aplites et d'amas plurimétriques d'oxyde de fers disséminés dans une intrusion que nous interprétons comme un granite alcalin. Des échantillons choisis de vingt-six nouveaux secteurs minéralisés ont donné des valeurs variant de 1,02 % à 8,34 % TREO. La surface minéralisée définie par échantillons choisis a été suivie de façon discontinue sur une longueur minimum de 1 200 mètres et d'une largeur de 525 mètres. Le granite alcalin hôte de cette minéralisation se manifeste par une anomalie magnétique aéroportée de 9 kilomètres de diamètre. Sur Ytterby 2, les valeurs élevées en TREO sont trouvées dans des dykes subverticaux centimétriques à plurimétriques qui recoupent, ou se trouvent dans la périphérie, d'une syénite rouge de 4,5 kilomètres carrés. Des échantillons choisis de quinze nouveaux secteurs minéralisées donnent des valeurs de 0,3 à 18,0 % TREO sur Ytterby 2. Plusieurs autres aires minéralisées, dont les résultats d'analyses sont en attentes, ont été découvertes sur les propriétés Ytterby 2 et Ytterby 3

Étant donné les succès de nos travaux de reconnaissance, Midland a complété plus de 300 kilomètres de levé magnétométrique et radiométrique au sol sur les meilleures cibles de REE déjà identifiées. Un second programme de cartographie géologique et d'échantillonnage géochimique et suivi de forage est en préparation.

« Midland et JOGMEC sont très emballés par ces 2 nouvelles découvertes de REE totalement inconnues avant nos travaux d'exploration de l'été 2010. À l'échelle mondiale, la découverte de systèmes alcalins porteurs de terres rares comparables au gîte de Strange Lake constitue des faits très rares, mais la découverte de 2 nouveaux systèmes dépasse largement nos attentes », a déclaré M. Gino Roger, Président et chef de la direction de Mildand. Il ajoute que « nous espérons qu'en ciblant nos meilleures anomalies magnétiques et radiométriques associées aux nouveaux indices trouvés que nous pourrons définir prochainement de nouvelles ressources de terres rares ».

L'identification de nouvelles cibles de REE en périphérie d'Ytterby 2 et Ytterby 3 ont récemment conduit Midland et JOGMEC à jalonner 777 claims additionnels couvrant une surface de 206 kilomètres carrés. Le projet, présentement détenu à 100 % par Midland, comprend maintenant 2662 claims couvrant une superficie d'environ 865 kilomètres carrés. Le projet Ytterby comprend 4 blocs de claim distincts situés entre 200 et 230 kilomètres à l'est et au nord-est de Schefferville, Québec. Le bloc principal du projet Ytterby est stratégiquement bien situé à 5 kilomètres au sud du gîte d'REE de Strange Lake et de la Zone-B, une nouvelle découverte en REE qu'a annoncée Quest Rare Minerals. Des forages aux diamants réalisés en 2009, ont permis d'établir une ressource inférée rencontrant les normes 43-101 de 114,8 millions de tonnes titrant 0,999 % TREO 1,973 % oxyde de zirconium, 0,208 % pentoxide de niobium, 0,053 % oxyde d'hafnium et 0,082 % oxyde de béryllium (voir le communiqué de presse de Quest du 7 avril dernier). Les gîtes de la Zone B et de Strange Lake (ancienne ressource pre-NI-43101, estimée à 52 millions de tonnes à 3,25 % ZrO₂, 0,56 % Nb₂O₅, 0,66 % Y₂O₃, 0,12 % BeO et d'un total de TREO de 1,3 %) se retrouvent au sein d'un pluton granitique peralcalin.

Des vues en plan et un tableau des meilleurs résultats d'analyses des nouvelles découvertes d'REE peuvent être consultés en visitant les liens suivants :

Pour la figure 1 – Carte de localisation régionale du projet Ytterby, visitez le lien suivant: http://media3.marketwire.com/docs/Figure-1-0923.pdf

Pour la figure 2 – Localisation du projet Ytterby sur fond radiométrique de thorium, visitez le lien suivant: http://media3.marketwire.com/docs/Figure-2-0923.pdf

Pour la figure 3 – Résultats d'échantillonnage sélectionné sur Ytterby 2 sur fond radiométrique de thorium, visitez le lien suivant: http://media3.marketwire.com/docs/Figure-3-0923.pdf

Pour la figure 4 – Résultats d'échantillonnage sélectionné sur Ytterby 3 sur fond radiométrique de thorium, visitez le lien suivant: http://media3.marketwire.com/docs/Figure-4-0923.pdf

Pour le tableau 1 – Résultats d'échantillonnage sélectionné sur le projet Ytterby, visitez le lien suivant: http://media3.marketwire.com/docs/Tableau-1-0923.pdf

Assurance Qualité/Contrôle Qualité (QA/QC)

Le programme d'exploration sur les propriétés Ytterby est sous la supervision de M. Robert Banville ing., géologue sénior pour Exploration Midland et une personne qualifiée tel que définie par la norme canadienne 43-101. Les analyses ont été effectuées au laboratoire Activations Laboratoire d'Ancaster, Ontario qui a mis en place un programme interne de contrôle de la qualité incluant l'insertion d'échantillons de référence minéralisés, d'échantillons stériles ainsi que de doubles d'échantillons.

Conditions de l'entente d'exploration

JOGMEC a l'option d'acquérir un intérêt de 50 % dans le projet Ytterby d'ici le 31 mars 2012, en contrepartie de dépenses d'exploration pour un montant total de 2 500 000 \$, dont 1 000 000 \$ durant la première année. Midland agira à titre d'opérateur tant qu'elle détiendra un intérêt égal ou supérieur à 50 % dans le projet. JOGMEC a aussi le droit de transférer une partie ou l'ensemble de son intérêt dans le projet Ytterby à une ou plusieurs sociétés japonaises ou consortium de sociétés japonaises.

À propos de JOGMEC

JOGMEC a été constituée en février 2004, dans le cadre du regroupement de Japan National Oil Corporation (« JNOC ») et de Metal Mining Agency of Japan (« MMAJ »). Elle est sous la juridiction du ministère japonais de l'économie, du commerce et de l'industrie et a pour mandat d'investir dans des projets de développement miniers partout dans le monde, dans le but d'assurer à l'industrie japonaise un approvisionnement constant en ressources naturelles.

À propos d'Exploration Midland

Midland mise sur l'excellent potentiel minéral et le climat d'investissement favorable du Québec pour faire la découverte de nouveaux gisements d'or, de métaux usuels et de terres rares de classe mondiale. Midland est fière de compter sur des partenaires renommés tels que JOGMEC, Mines Agnico-Eagle Limitée, Corporation Minière Osisko, North American Palladium Limitée, Zincore Metals inc. et SOQUEM inc. Midland préfère travailler en partenariat et entend conclure des ententes à cet égard en ce qui concerne ses propriétés nouvellement acquises. La direction évalue actuellement d'autres opportunités et projets afin d'accroître le portfolio de la Société.

Ce communiqué de presse a été préparé par Robert Banville, ing., géologue sénior pour Exploration Midland et personne qualifiée selon la norme canadienne 43-101. Pour plus d'information, veuillez consulter le site Web de la Société ou contacter :

Gino Roger, Président et Chef de la direction

Tél.: 450 420-5977 Téléc.: 450 420-5978

 $Courriel: \underline{info@midlandexploration.com}$

Site Web: www.explorationmidland.com

La Bourse de croissance TSX et son fournisseur de services de réglementation (au sens attribué à ce terme dans les politiques de la Bourse de croissance TSX) n'assument aucune responsabilité quant à la pertinence ou à l'exactitude du présent communiqué.

Ce communiqué de presse renferme certains énoncés prospectifs qui comprennent des éléments de risque et d'incertitude et nul ne peut garantir que ces énoncés se révéleront exacts. Il s'ensuit que les résultats réels et les évènements futurs pourraient différer considérablement de ceux anticipés par de tels énoncés. Ces risques et incertitudes sont décrits dans le rapport annuel et lors de dépôts par Midland auprès des autorités réglementaires.

Figure 1. Ytterby Project Regional Location Map

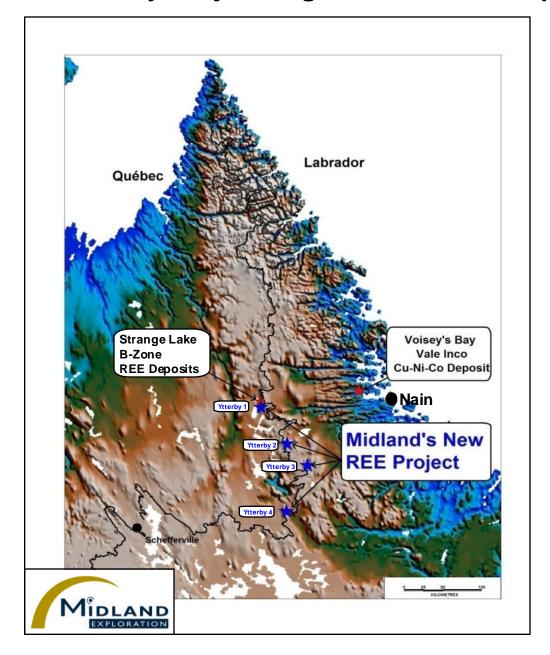


Figure 2. Ytterby Project Location Map on Radiometric Map

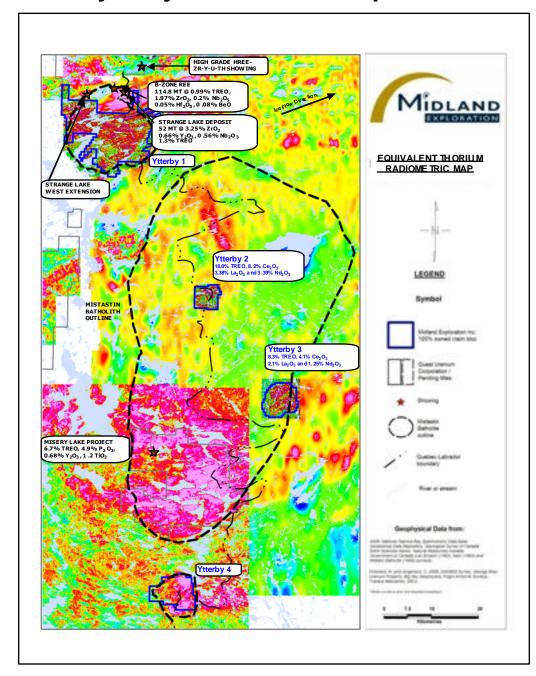


Figure 3. Ytterby 2 Grab Sample Results on Thorium Radiometric Map

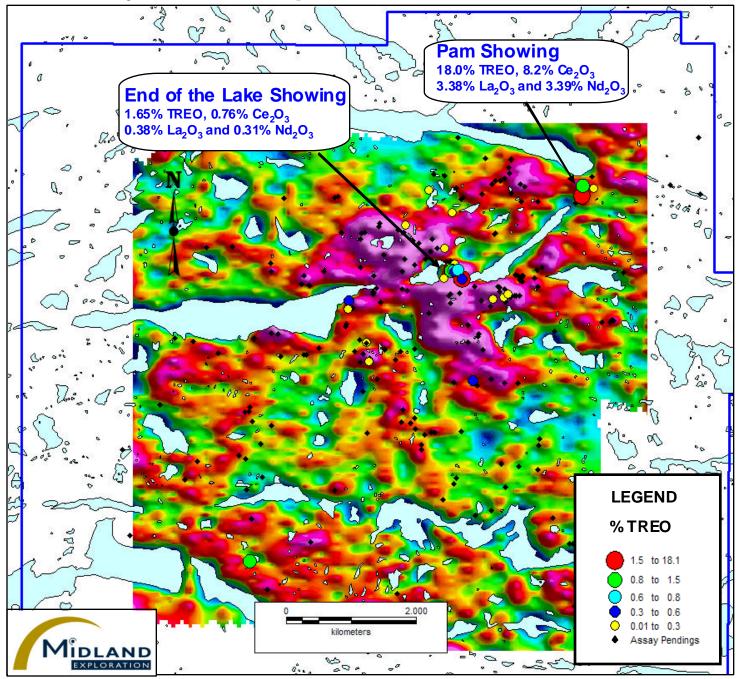
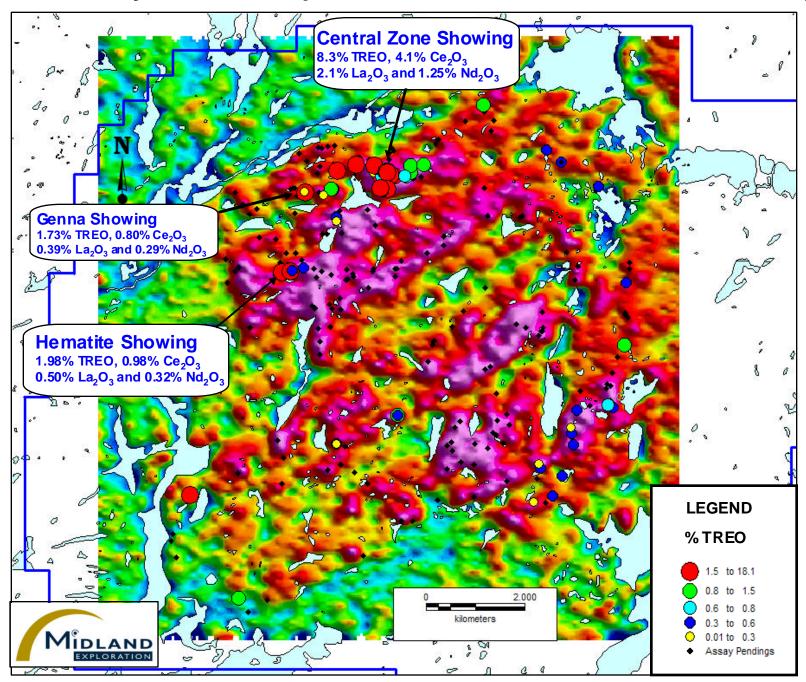



Figure 4. Ytterby 3 Grab Sample Results on Thorium Radiometric Map

Table 1 - Best Selected Grab Sampling Results (>1% TREO), Ytterby Rare Earth Project, Québec and Labrador															52													
									Light (ppm)							Heavy (ppm)												
Sample #	Property	Zone	Easting	Northing	Media	Rock type	Fe2O3 %	TiO2 %	Th ppm	U ppm	La203	Ce203	Pr203	Nd2O3	Sm2O3	Eu203	Gd203	Tb2O3	Dy203	Ho2O3	Er203	Tm203	Yb203	Lu203	Y203	TREO + Y	TREO + Y (%)	HREE (%)
1804	Y3	20	480853	6153616	Boulder	Alkaline granite	2.49	0.232	374	5.5	3225	6383	655	2298	303	6	183	19	81	2	9	2	15	3	338	13522	1.35	4.87
1808	Y3	20	474922	6145732	Boulder	Alkaline granite	40.45	2.636	430	40.5	3259	7537	779	2834	474	10	342	53	298	1	3	0	3	0	1472	17067	1.71	12.79
1865	Y2	20	459323	6182909	Outcrop	Syenite	11.64	0.498	9080	301	33776	82224	9573	33942	6482	36	3458	448	1859	274	669	89	522	73	6609	180033	18.00	7.80
2024	Y3	20	478888	6152188	Outcrop	Alkaline granite	16.74	1.395	978	17.2	8960	17452	1755	5844	807	12	445	57	265	44	109	13	74	10	1053	36900	3.69	5.64
2025	Y3	20	478820	6152115	Outcrop	Alkaline granite	5.27	0.433	674	11.4	6492	11866	1160	3924	544	8	279	32	134	15	47	8	51	8	544	25112	2.51	4.49
2026	Y3	20	478792	6152186	Outcrop	Alkaline granite	6.26	0.72	873	16.6	11936	20888	1954	5997	739	9	342	39	173	3	8	1	7	1	775	42872	4.29	3.17
2030	Y2	20	457486	6181631	Outcrop	Syenite	16.45	2.009	3060	44.7	3777	7588	820	3069	526	10	239	21	69	28	71	9	53	8	235	16523	1.65	4.50
2032	Y3	20	478792	6152186	Outcrop	Alkaline granite	6.58	0.648	941	12.9	8831	16749	1674	5412	664	10	332	37	165	25	57	7	38	5	658	34665	3.47	3.85
2039	Y3	20	478716	6152291	Outcrop	Alkaline granite	3.61	0.298	266	4.9	3436	6040	529	1605	159	3	76	8	32	3	7	1	7	1	137	12043	1.20	2.29
2048	Y3	20	478643	6152395	Outcrop	Alkaline granite	9.2	0.879	2100	45.7	13487	25534	2586	8328	1160	19	625	76	343	55	134	17	98	14	1488	53964	5.40	5.32
2049	Y3	20	478900	6152270	Outcrop	Alkaline granite	9.2	0.879	2100	45.7	11077	20763	1919	6196	778	11	405	41	166	13	41	7	46	7	695	42165	4.22	3.40
2050	Y3	20	478897	6152278	Outcrop	Alkaline granite	8.96	0.989	2080	44.6	21094	40644	3862	12533	1670	21	938	108	467	2	6	1	7	1	2023	83376	8.34	4.29
2052	Y3	20	479029	6152179	Outcrop	Alkaline granite	5.38	0.571	913	19.7	12442	22650	2095	6524	792	10	427	46	196	25	59	7	40	6	869	46186	4.62	3.65
2053	Y3	20	478925	6152231	Outcrop	Alkaline granite	8.65	0.745	3980	78.1	16419	35256	3991	13997	2157	19	1142	135	572	87	202	25	139	20	2201	76360	7.64	5.95
2054	Y3	20	478978	6152196	Outcrop	Alkaline granite	27.42	2.104	665	12.7	6316	12332	1205	4240	634	9	419	56	274	75	183	23	128	18	1269	27179	2.72	9.02
2056	Y3	20	478907	6152256	Outcrop	Alkaline granite	6.63	0.668	1490	14.7	11845	23309	2423	8025	1131	15	588	67	285	43	101	12	64	9	1079	48993	4.90	4.62
2057	Y3	20	478904	6151928	Outcrop	Alkaline granite	4.24	0.372	362	5	5002	9022	816	2671	315	6	169	17	76	32	81	10	59	8	300	18584	1.86	4.08
2059	Y3	20	478762	6151932	Outcrop	Alkaline granite	6.68	0.628	1090	11.4	11254	21392	1990	6360	818	13	416	44	172	5	13	2	10	2	630	43119	4.31	3.03
2065	Y3	20	478283	6152416	Outcrop	Alkaline granite	20.83	1.819	339	14.7	3537	6858	686	2495	370	7	246	36	192	2	7	1	7	1	834	15278	1.53	8.72
2066	Y3	20	477883	6152279	Outcrop	Alkaline granite	4.19	0.384	694	9.7	7945	14848	1381	4521	546	8	282	29	123	3	8	1	7	1	518	30221	3.02	3.24
2067	Y3	20	477883	6152279	Outcrop	Alkaline granite	4.62	0.402	755	10.2	6392	12650	1252	4129	524	8	254	28	121	18	43	5	29	4	462	25919	2.59	3.75
2069	Y3	20	477768	6151914	Outcrop	Alkaline granite	24.32	1.773	386	12.8	2855	6027	606	2296	397	5	282	41	225	35	93	13	71	9	1022	13976	1.40	12.85
2070	Y3	20	477239	6151855	Outcrop	Alkaline granite	27/2/20	4.69	427	19.8	3941	8016	804	2916	407	7	259	32	154	18	42	5	27	3	690	17322	1.73	7.15
2082	Y3	20	479380	6152245	Outcrop	Alkaline granite	-	1.634	339	10.7	2754	5436	540	1874	226	5	129	16	74	2	4	0	3	0	418	11479	1.15	5.66
2083	Y3	20	479381	6152390	Outcrop	- Contract	200000	1.057	337	9.1	3372	6418	607	2085	248	6	144	17	85	4	9	1	7	1	387	13392	1.34	4.94
2084	Y3	20	479635	6152410	Outcrop	Alkaline granite	16	0.885	277	7.3	2539	4769	470	1605	202	7	122	16	80	5	14	2	14	2	394	10241	1.02	6.41
2093	Y3	20	476777	6150235	Outcrop	Alkaline granite	18.87	1.473	654	14.7	4926	9538	888	3186	376	6	212	25	125	3	8	1	8	1	570	19873	1.99	4.83
2094	Y3	20	476948	6150258	Outcrop	Alkaline granite	4.08	0.327	526	6.9	3676	7235	690	2553	302	7	164	16	67	8	23	3	21	3	264	15032	1.50	3.83